S. Sukdolak, S. Solujić, N.Manojlović, N.Vuković
Department of Chemistry, Faculty of Science, University of Kragujevac, P.O.Box.60, 34000 Kragujevac, Serbia \& Montenegro. E-mail: duda@knez.uis.kg.ac.yu
Lj. Krstić

ICTM, Center of Chemistry, P.O.Box 815. 11001. Belgrade, Serbia \& Montenegro Received March 11, 2004

Abstract

3-Acetyl-4-hydroxy-chromen-2-one (1) was brominated with phenyltrimethylammonium tribromide to afford 3-(2-bromoacetyl)-4-hydroxy-chromen-2-one (2) whose reactions with thiourea, thioacetamide and ammonium dithiocarbamate gave respectively 3-(2-amino-thiazol-4-yl)-4-hydroxy-, 4-hydroxy-3-(2-phenyl-thiazol-4-yl)- and 4-hydroxy-3-(2-mercapto-thiazol-4-yl)chromen-2-one. In a similar manner, compound 2 was treated with four 1 -substituted-2-thioureas and thiobenzamide to give the corresponding 4-hydroxy-3-(thiazol-4-yl)-chromen-2-one derivatives.

J. Heterocyclic Chem., 41, 593 (2004).

In pharmacology, 2-aminothiazoles are one of the most important compounds as precursors to synthetic drugs, such as sulphathiazole (antibiotic) and thiabedazole (antihelmintic). The 2 -aminothiazoles are prepared by Hantzsch reaction of α-haloketones with thioureas [1-6]. As an extension of 3-acetyl-4-hydroxy-chromen-2-one chemistry [7-8], now we wish to report the preparation of 3-(2-bromoacetyl)-4-hydroxy-chromen-2-one (2) as new synthon and the synthesis of 4-hydroxy-3-(thiazol-4-yl)-chromen-2-ones by its reactions with thioureas, thioamides and ammonium dithiocarbamate.

Results and Discussion.
Preparation of 3-(2-Bromoacetil)-4-hydroxy-chromen-2one (2).

3-(2-Bromoacetyl)-4-hydroxy-chromen-2-one (2) is expected to be a very useful compound for the synthesis of a various heterocycle-substituted chromen-2-ones (coumarins). However, its preparation by using bromine is difficult, since the chromen-2-one nucleus is very susceptible to electrophilic substitution [9-11]. For example, bromination of 3-acetyl-4-hydroxy-chromen-2-one (1) in a conventional manner (bromine/acetic acid) gave substitution products at the aromatic nucleus as a major product [12-15]. Then, we carried out bromination by using phenyltrimethylammonium tribromide [16-19], which is a useful reagent for α-bromination of ketones and acetals.

Figure 1

When 3-acetyl-4-hydroxy-chromen-2-one (1) was treated with phenyltrimethylammonium tribromide in tetrahydrofuran to give only 3-(2-bromoacetyl)-4-hydroxy-chromen-2-one (2) as yellow crystals (mp 144$146^{\circ}$). Its structure was determined from the spectral data as well as elemental analysis $\left(\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{BrO}_{4}\right)$. In the ir spectrum, three characteristic absorptions were observed at 3185 (OH), 1725 (bromoacetyl $\mathrm{C}=\mathrm{O}$) and $1685 \mathrm{~cm}^{-1}$ (chromen-2-one $\mathrm{C}=\mathrm{O}$). The ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum shows a singlet peak at $\delta 4.28(2 \mathrm{H})$ for CH_{2}, signals at δ 7.31-7.67 $(4 \mathrm{H})$ for ring protons and broadened singlet peak at δ $15.70(\mathrm{OH})$.

Synthesis of 4-Hydroxy-3-(thiazol-4-yl)coumarines.
Treatment of 3-(2-bromoacetyl)-4-hydroxy-chromen-2one (2) with thiourea in refluxing ethanol for 30 minutes gave 3-(2-amino-thiazol-4-yl)-4-hydroxy-chromen-2-one hydrobromide (3a) as yellow needles ($\mathrm{mp} 255-257^{\circ}$) in a 60% yield. Its structure was determined on the basic of the spectral data as well as on elemental analysis $\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} \cdot \mathrm{HBr}\right)$. The ir spectrum shows three characteristic absorptions at $3381(\mathrm{OH}), 3120\left(\mathrm{NH}_{2}\right)$ and 1693 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O})$. In the ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum, one isolated signal is observed at $\delta 7.46$ (s) for $5^{\prime}-\mathrm{H}$, besides multiplet peaks at δ 7.29-7.82 (4H), for aromatic protons, broadened singlet peak at $\delta 15.87$ for hydroxyl proton and singlet peak at δ 8.58 for NH_{2} protons. R_{f} value for this compound is 0.25 using methyl-ethyl ketone:toluene, $1: 9(\mathrm{v} / \mathrm{v})$, as eluent. Compound 3a also gave positive coloration with iron(III) chloride solution.

The reaction of 2 with 1-(methyl)thiourea gave 4-hydroxy-3-(2-methylamino-thiazol-4-yl)-chromen-2-one (3b) $\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\right.$), in 67% yield (mp 218-220 $)$. The methylamino group was confirmed from the ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum, which shows a singlet peak at $\delta 2.98(3 \mathrm{H})$ for methyl group and a broad peak at $\delta 11.01(1 \mathrm{H})$ for the NH proton.

Figure 2

In this spectrum, one isolated singlet is observed at $\delta 7.38$ for 5 '- H , besides multiplet peaks at $\delta 7.29-7.84(4 \mathrm{H})$, for aromatic protons and a broadened peak at $\delta 16.36$ for the OH proton. Rf value for this compound is 0.42 (methylethyl ketone:toluene, $1: 9, \mathrm{v} / \mathrm{v}$)
In a similar manner, treatment of 2 with three 1(aryl)thioureas gave the corresponding 3-(2-aryl-thiazol-4yl)-chromen-2-ones ($\mathbf{3 c} \mathbf{c}$) in 63-74 \% yields. These structures were also determined from the spectral data and elemental analysis (See: Experimental).

When a mixture of 2 and thioacetamide in ethanol was refluxed, 4-hydroxy-3-(2-methyl-thiazol-4-yl)-chromen-2-one ($\mathbf{4 a}$) $\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{~S}\right)$ was isolated as yellow needles in a 72% yield (mp 182-184 $)$. Its structure was determined from the spectral data and elemental analysis. In the ir spectrum, two characteristic absorptions were observed at $3378(\mathrm{OH})$, and $1697(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$. In the ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum, one isolated singlet is observed at $\delta 8.28$ for $5^{\prime}-\mathrm{H}$, besides multiplet peaks at $\delta 7.29-7.80(4 \mathrm{H})$ for aromatic

Figure 3
protons, peak at $\delta 2.46(3 \mathrm{H})$ for CH_{3} group, and a broad peak at $\delta 15.36$ for OH .

Compound 2 was also reacted with thiobenzamide to afford the corresponding 4-hydroxy-3-(2-phenyl-thiazol4 -yl)-chromen-2-one ($\mathbf{4} \mathbf{b}$), in 74% yield (mp 189-191 ${ }^{\circ}$). The structure of this product was confirmed from its spectral data (See: Experimental).

Furthermore, compound 2 was heated with ammonium dithiocarbamate in refluxing ethanol to give 4-hydroxy-3-(2-mercapto-thiazol-4-yl)-chromen-2-one (5) (mp 204$206^{\circ}$) in a 81% yield. R_{f} value for this compound is 0.42 (methyl-ethyl ketone:toluene, 1:9, v/v).

Figure 4

In its ${ }^{1} \mathrm{H}$ nmr spectrum, the SH and 5^{\prime} - H protons were observed at $\delta 3.46$ (s) and 8.23 (s), respectively. The elemental analysis $\left(\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{NO}_{3} \mathrm{~S}_{2}\right)$ also supported the structure.
In summary, it is found that 3-(2-bromoacetyl)-4-hydroxy-chromen-2-one (2) is useful material for the synthesis of heterocycle-substituted 4-hydroxy coumarin compounds.

Some of 4-hydroxy-3-(thiazol-4-yl)-chromen-2-one derivarives (as a $N[55$-(4-hydroxy-chromen-2-one)-thia-zol-2'-yl]-benzenesulphnamide [20]) are readily prepared and expected to be pharmaceutical precursors.

EXPRIMENTAL

Measurements.
Melting points were recorded on a Kofler-hot stage apparatus and are uncorrected. Microanalysis of carbon, hydrogen and nitrogen was carried out with a Carlo Erba 1106 microanalyser. The ir spectra were run on Perkin-Elmer Grating Spectrophotometers Model 137 and Model 197. The nmr spectra were recorded on a VARIAN FT 80 A and 200" Gemini spectrometer, in CDCl_{3} and DMSO- d_{6}, using TMS as the internal standard. Chemical shifts are given in $\delta(\mathrm{ppm})$; J, coupling constants in hertz (Hz), abbreviations: s-singlet, d-doublet, t-triplet, q-quartet, m-multiplet and br-broadened). Thin layer chromatography was taken on plastic sheets of silica gel 60 (Merck). Abbreviations used: $\mathrm{PhTAPBr}_{3}$-phenyltrimethylammonium tribromide, DMSO-dimethylsulphoxide-d ${ }_{6}$, EtOH-ethanol, CDCl_{3} deuterochloroform, r.t.-room temperature.

Starting Compound: 3-Acetyl-4-hydroxy-chromen-2-one (1).
To a solution of 4-hydroxy-chromen-2-one ($3 \mathrm{~g}, 18.6$ mmoles) in acetic acid (16 ml) phosphorous oxychloride (5.6 ml) was added. The mixture was heated at reflux for 30 minutes. After cooling, the precipitate was collected and recrystallized from ethanol, to give 3-acetyl-4-hydroxy-chromen-2-one (1), as white needles, in a yield of $2.7 \mathrm{~g}(90 \%), \mathrm{mp} 134-136^{\circ}$; ir (KBr): 3185, $2950,1700,1705,1610,1560,1460.1310,1130,950,840,820$, $770 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.35$ (ddd, $1 \mathrm{H}, 6-\mathrm{H}^{3} \mathrm{~J}_{6,5}=7.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{6,8}=1.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{6,7}=7.4 \mathrm{~Hz}$), 7.42 (dd, $1 \mathrm{H}, 8-\mathrm{H},{ }^{3} \mathrm{~J}_{7,8}=8.35 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{6,8}=1.2 \mathrm{~Hz}$,), 7.42 (ddd, $1 \mathrm{H}, 7-\mathrm{H}$, $\left.{ }^{3} \mathrm{~J}_{7,8}=8.35 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{7,6}=7.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{7,5}=1.6 \mathrm{~Hz}\right), 7.69(\mathrm{dd}, 1 \mathrm{H}, 5-\mathrm{H}$, $\left.{ }^{3} \mathrm{~J}_{5,6}=7.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{5,7}=1.6 \mathrm{~Hz}\right), 15.7(\mathrm{OH}) ;{ }^{13} \mathrm{C} \mathrm{nmr}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 28.33\left(\mathrm{CH}_{3}\right), 160.10(\mathrm{CO}), 177.32(\mathrm{C}-4), 116.91(\mathrm{C}-$ 8), 159.65 (C-2), 154.10 (C-9), 136.85 (C-7), 116.09 (C-5), 124.82 (C-6), 114.41 (C-10), 101.91 (C-3); ms: m/z 204 $\left(\mathrm{M}^{+}, 100\right) 189(74), 161(43), 120(17), 119(31), 92(56), 78(33)$, 43 (28).
Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{4}: \mathrm{C}, 64.71 ; \mathrm{H}, 3.95$. Found: C, 64.92; H, 3.68.

3-(2-Bromoacetyl)-4-hydroxy-chromen-2-one (2).
To a solution of 3-acetyl-4-hydroxy-chromen-2-one (1) (2.0 g, 9.8 mmoles) in tetrahydrofuran (40 ml) was added phenyltrimethylammonium tribromide ($3.68 \mathrm{~g}, 9.8$ mmoles) in a period of 15 minutes (at room temperature). A precipitate was deposited from the solution, and the color of the solution changed into pale yellow. After stirring for 20 minutes and standing for 30 minutes, cold water (100 ml) was added to the reaction mixture. The precipitate was collected, washed with water and recrystallized from ethanol to afford 3-(2-bromoacetyl)-4-hydroxy-chromen-2-one (2) as light yellow needles, in yield $2.51 \mathrm{~g}(90 \%)$, mp 144-146 ${ }^{\circ}$; ir (KBr): $3185,1725,1685,1560,1437,1200$, 1032, $945,842,822,771 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 4.28 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 7.31 (ddd, $1 \mathrm{H}, 6-\mathrm{H}, \mathrm{J}_{6,5}=7.38 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{6,8}=1.16$ $\mathrm{Hz},{ }^{3} \mathrm{~J}_{6,7}=7.32 \mathrm{~Hz}$), $7.39\left(\mathrm{dd}, 1 \mathrm{H}, 8-\mathrm{H},{ }^{3} \mathrm{~J}_{7,8}=8.35 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{6,8}=1.16\right.$ $\mathrm{Hz}), 7.42\left(\mathrm{ddd}, 1 \mathrm{H}, 7-\mathrm{H},{ }^{3} \mathrm{~J}_{7,8}=8.35 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{7,6}=7.37 \mathrm{~Hz}\right.$, ${ }^{4} \mathrm{~J}_{7,5}=1.63 \mathrm{~Hz}$,), $7.67\left(\mathrm{dd}, 1 \mathrm{H}, 5-\mathrm{H},{ }^{3} \mathrm{~J}_{5,6}=7.89 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{5,7}=1.63\right.$ Hz,), $15.70(\mathrm{OH}) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 33.41\left(\mathrm{CH}_{2}\right)$, 183.50 (CO), 185.32 (C-4), 115.91 (C-8), 158.65 (C-2), 153.00 (C-9), 134.85 (C-7), 125.09 (C-5), 124.82 (C-6), 119.41 (C-10), 100.91 (C-3).

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{BrO}_{4}$: C, $46.67 ; \mathrm{H}, 2.49$. Found: C, 46.92; H, 2.38.

Reactions of 3-(2-Bromoacetyl)-4-hydroxy-chromen-2-one (2) with Thioureas.

To a solution of 3-(2-bromoacetyl)-4-hydroxy-chromen-2-one (2) $(1 \mathrm{~g}, 3.5 \mathrm{mmoles})$ in absolute ethanol $(60 \mathrm{ml})$ thiourea (3.5 mmoles) was added. The mixture was refluxed for 30 minutes. After cooling, the precipitate was collected and recrystallized from ethanol-10\% sodium hydroxide, to give 3-(thiazol-4-yl)-4hydroxy coumarines (3a-e).
3-(2-Amino-thiazol-4-yl)-4-hydroxy-chromen-2-one Hydrobromide (3a).
This compound was obtained from the reaction with thiourea as yellow needles (ethanol-10\% sodium carbonate) in a yield of $0.71 \mathrm{~g}(60 \%)$, mp $255-257^{\circ}$; ir (KBr): 3433, 3381, 3241, 3120, 1693, 1609, 1524, 1405, 1328, 1294, 1165, 1072, $950 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ nmr (200 MHz, DMSO-d d_{6}): $\delta 7.29-7.37$ (m, 2H, $6-\mathrm{H}, 8-\mathrm{H}$,
$\left.{ }^{4} \mathrm{~J}_{6,8}=1.16 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{6,5}=7.90 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{6,7}=7.35 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{8,7}=8.35 \mathrm{~Hz}\right)$, 7.46 (s, 1H, $5^{\prime}-\mathrm{H}$), 7.44 (ddd, $1 \mathrm{H}, 7-\mathrm{H},{ }^{3} \mathrm{~J}_{6,7}=7.35 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{7,5}=1.63$ $\mathrm{Hz},{ }^{3} \mathrm{~J}_{8,7}=8.35 \mathrm{~Hz}$,), $7.82\left(\mathrm{dd}, 1 \mathrm{H}, 5-\mathrm{H},{ }^{4} \mathrm{~J}_{7,5}=1.63 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{6,5}=\right.$ 7.90 Hz ,), 8.58 (bs, $1 \mathrm{H}, \mathrm{NH}_{2}$), 15.87 (s, $1 \mathrm{H}, \mathrm{OH}$); ${ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{(} 50$ MHz, DMSO-d ${ }_{6}$): $\delta 165.42$ (C-2'), 140.67 (C-4'), 108.56 (C-5'), 154.28 (C-2), 93.86 (C-3), 163.09 (C-4), 123.76 (C-5), 124.06 (C-6), 132.11 (C-7), 116.34 (C-8), 120.23 (C-9), 152.05 (C-10).

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} \cdot \mathrm{HBr}$: C, 55.37 ; $\mathrm{H}, 3.10$; N, 10.76. Found: C, $55.12 ; \mathrm{H}, 2.98 ; \mathrm{N}, 10.38$.

4-Hydroxy-3-(2-methylamino-thiazol-4-yl)-chromen-2-one (3b).
This compound was obtained from the reaction with 1 -(methyl)-thiourea as yellow needles (from ethanol) in a yield of $0.52 \mathrm{~g}(67 \%), \mathrm{mp} 218-220^{\circ}, \mathrm{R}_{\mathrm{f}}=0.42$ (silica gel, methyl-ethyl ketone:toluene, 1:9, v/v); ir (KBr): 3433, 3381, 3155, $3116(\mathrm{OH})$ and (NH), 1698 (C=O), 1630, 1513, 1409, 1340, 1299, 1185, $1092,960 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{6}\right): \delta 2.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.29-$ $7.84\left(\mathrm{~m}, 4 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}, 5-\mathrm{H}, 8-\mathrm{H},{ }^{4} \mathrm{~J}_{7,5}=1.63 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{6,8}=1.18 \mathrm{~Hz}\right.$, ${ }^{3} \mathrm{~J}_{8,7}=8.35 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{6.5}=7.89 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{6,7}=7.37 \mathrm{~Hz}$,), $7.38\left(\mathrm{~s}, \mathrm{H}, 5^{\prime}-\mathrm{H}\right)$, 11.01 (bs, 1H, NH), 16.36 (s, 1H, OH); ${ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{(DMSO-d}{ }_{6}$): δ 159.42, (C-2'), 109.46, (C-5'), 141.67 (C-4'), 156.32 (C-2), 168.39 (C-4), $32.34\left(\mathrm{CH}_{3}\right)$.

Anal.Calcd.for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 56.92 ; \mathrm{H}, 3.67$; N, 10.26. Found: C, 56.62; H, 3.98; N, 10.28.

4-Hydroxy-3-(2-phenylamino-thiazol-4-yl)-chromen-2-one (3c).
This compound was obtained from the reaction with 1-(phenyl)-thiourea as yellow needles (from ethanol) in a yield of $0.42 \mathrm{~g}(70 \%), \mathrm{mp} 224-226^{\circ}, \mathrm{R}_{\mathrm{f}}=0.64$ (silica gel, methyl-ethyl ketone:toluene, 1:9, v/v); ir (KBr): 3483 (NH), 3261 (OH), 3030, 1684, (C=O), 1615, 1533, 1459, 1165, 1072, $966 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ nmr (DMSO-d ${ }_{6}$): $\delta \quad 7.37-7.85(\mathrm{~m}, 4 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}, 5-\mathrm{H}, 8-\mathrm{H}$, ${ }^{4} \mathrm{~J}_{7,5}=1.63 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{6,8}=1.17 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{8,7}=8.34 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{6,5}=7.87 \mathrm{~Hz}$, $\left.{ }^{3} \mathrm{~J}_{6,7}=7.35 \mathrm{~Hz}\right)$ 6.8-7.2 (m, 5H, phenyl), 8,11 ($\left.\mathrm{s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 10.31$ (bs, $1 \mathrm{H}, \mathrm{NH}$), $12.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): ~ \delta$ 159.42 (C-2'), 119.36, (C-5'), 150.37 (C-4'), 156.32 (C-2), 168.78 (C-4).

Anal.Calcd.for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 64.27 ; \mathrm{H}, 3.61 ; \mathrm{N}, 8.33$. Found: C, 63.98; H, 3.78; N, 8.28.

4-hydroxy-3-(2- p-tolylamino-thiazol-4-yl)-chromen-2-one (3d).
This compound was obtained from the reaction with 1-(4methylphenyl)thiourea as yellow needles (from ethanol) in a yield of $0.78 \mathrm{~g}(63 \%), \mathrm{mp} 208-210^{\circ}, \quad \mathrm{R}_{\mathrm{f}}=0.58$ (silica gel, methyl-ethyl ketone:toluene, 1:9, v/v); ir (KBr) 3287 (OH), 3147 (NH), 3082, 1692 (C=O), 1621, 1591, 1432, 1356, 1106, $1052,866 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}\left(\right.$ DMSO-d $\left.{ }_{6}\right): \delta 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.29-$ $7.82\left(\mathrm{~m}, 4-\mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}, 5-\mathrm{H}, 8-\mathrm{H},{ }^{4} \mathrm{~J}_{7,5}=1.63 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{6,8}=1.15 \mathrm{~Hz}\right.$, $\left.{ }^{3} \mathrm{~J}_{8,7}=8.37 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{6,5}=7.89 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{6,7}=7.34 \mathrm{~Hz}\right), 7.12-7.21(\mathrm{ABq}$, 4 H , phenyl, ${ }^{3} \mathrm{~J}=8,41 \mathrm{~Hz}$), $8,24(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 9.86(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH})$, $14.22(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{DMSO}_{\mathrm{d} 6}\right): \delta 20.67\left(\mathrm{CH}_{3}\right), 153.92$ (C-2'), 118.56 (C-5'), 150.67 (C-4'), 145.62 (C-1, phenyl), 129.78 (C-4, phenyl).
Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 64.13 ; \mathrm{H}, 4.03$; $\mathrm{N}, 7.99$. Found: C, 63.99; H, 4.10; N, 8.13.
4-Hydroxy-3-[2-(4-methoxy-phenylamino)-thiazol-4-yl]-chromen-2-one (3e).

This compound was obtained from the reaction with 1-(4methoxyphenyl)thiourea as pale orange needles (from ethanol) in a yield of $0.964 \mathrm{~g}(74 \%), \mathrm{mp} 198-200^{\circ}, \mathrm{R}_{\mathrm{f}}=0.46$ (silica gel,
methyl-ethyl ketone:toluene, 1:9, v/v); ir (KBr): 3476 (NH), $3251(\mathrm{OH}), 3076,1686$ (C=O), 1665, 1563, 1459, 1365, 1002, $846 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{6}\right): \delta 7.35-7.85$ (m, 4H, 6-C, 7-C, 5C, $8-\mathrm{C},{ }^{4}{ }^{4}{ }_{7,5}=1.61 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{6,8}=1.15 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{8,7}=8.31 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{6,5}=7.85$ $\mathrm{Hz},{ }^{3} \mathrm{~J}_{6,7}=7.33 \mathrm{~Hz}$), 6.81-7.05 (ABq, 4H, phenyl, ${ }^{3} \mathrm{~J}=8,90 \mathrm{~Hz}$), $8,17$ (s, 1H, 5'-H), 10.09 (bs, $1 \mathrm{H}, \mathrm{NH}), 14.85$ (bs, $1 \mathrm{H}, \mathrm{OH}$); ${ }^{13} \mathrm{C}$ nmr (DMSO-d d_{6} : $\delta 154.52$ (C-2'), 118.86 (C-5'), 150.27 (C-4'). 153.32 (C-4), 139.78 (C-1).

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 62.28 ; \mathrm{H}, 3.85 ; \mathrm{N}, 7.65$. Found: C, 62.56; H, 3.79; N, 7.48.

Reaction of 3-(2-Bromoacetyl)-4-hydroxychromen-2-one (2) with Thioamides.

A mixture of 3-(2-bromoacetyl)-4-hydroxychromen-2-one (2) ($1 \mathrm{~g}, 3.5$ mmoles) and thioamide (3.5 mmoles) in absolute ethanol (90 ml) was heated for 30-45 min under refluxing. After cooling, the precipitate was collected and recrystallized to give 4-hydroxy-3-(thiazol-4-yl)-chromen-2-one (4a-b).

4-Hydroxy-3-(2-methyl-thiazol-4-yl)-chromen-2-one (4a).
This compound was obtained from the reaction with methylthioamide as orange needles (ethanol) in a yield of 0.186 g (72%), $\mathrm{mp} 182-184^{\circ}, \mathrm{R}_{\mathrm{f}}=0.32$ (silica gel, methyl-ethyl ketone:toluene, $1: 9, \mathrm{v} / \mathrm{v})$; ir (KBr) $3378(\mathrm{OH}), 3030,1697(\mathrm{C}=\mathrm{O}), 1615,1533$, 1459, 1390, 1165, 1072, $966 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 2.46$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.29-7.80\left(\mathrm{~m}, 4 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}, 5-\mathrm{H}, 8-\mathrm{H},{ }^{4} \mathrm{~J}_{7,5}=1.62 \mathrm{~Hz}\right.$, ${ }^{4} \mathbf{J}_{6,8}=1.15 \mathrm{~Hz},{ }^{3} \mathbf{J}_{8,7}=8.37 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{6,5}=7.9 \mathrm{~Hz},{ }^{3} \mathbf{J}_{6,7}=7.39 \mathrm{~Hz}$), 8.28 (bs, $\left.1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 15.36$ (bs, $1 \mathrm{H}, \mathrm{OH}$); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (DMSO-d ${ }_{6}$): δ 162.02 (C-2'), 111.96 (C-5'), 144.27 (C-4'). 154.32 (C-2), 167.99 (C-4), $18.38\left(\mathrm{CH}_{3}\right)$,

Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 60.22$; H, 3.50; N, 5.40. Found: C, 59.86; H, 3.82; N, 5.28.
4-Hydroxy-3-(2-phenyl-thiazol-4-yl)-chromen-2-one (4b).
This compound was obtained from the reaction with phenylthioamide as orange needles (from ethanol) in a yield of 0.186 g (74 \%), mp 189-191, $\mathrm{R}_{\mathrm{f}}=0.45$ (silica gel, methyl-ethyl ketone:toluene, 1:9); ir (KBr) $3165(\mathrm{OH}), 3011,1691(\mathrm{C}=\mathrm{O})$, 1619, 1532, 1439, 1373, 1163, 1077, $969 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO$\left.\mathrm{d}_{6}\right): \delta 7.10-7.82(\mathrm{~m}, 9 \mathrm{H}$, phenyl and $6-\mathrm{H}, 7-\mathrm{H}, 5-\mathrm{H}, 8-\mathrm{H}), 8.29(\mathrm{~s}$, $\left.1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 15.19$ (s, 1H, OH); ${ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 167.12$ (C$\left.2^{\prime}\right), 112.96$ (C-5'), 144.87 (C-4'), 155.92 (C-2), 168.77 (C-4).

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 67.28 ; \mathrm{H}, 3.45 ; \mathrm{N}, 4.36$. Found: C, 66.92; H, 3.81; N, 4.28.
4-Hydroxy-3-(2-mercapto-thiazol-4-yl)-chromen-2-one (5).
A mixture of 3-(2-bromoacetyl)-4-hydroxy-chromen-2-one (2) ($0.285 \mathrm{~g}, 1 \mathrm{mmoles}$) and ammonium dithiocarbamate $(0.110 \mathrm{~g}, 1$
mmoles) in absolute ethanol (30 ml) was heated for 30 minutes under refluxing. The precipitate was collected and recristallized from 70% ethanol to afford 4-hydroxy-3-(2-mercapto-thiazol-4-yl)-chromen-2-one (5) as yellow-orange needles, yield 0.39 g (81 $\%$), mp 204-206, $\mathrm{R}_{\mathrm{f}}=0.42$ (silica gel, methyl-ethyl ketone:toluene, 1:9, v/v); ir (KBr): $3305(\mathrm{OH}), 3021,1682$ (C=O), 1621, 1533, 1474, 1396, 1166, 1067, $962 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO): $\delta 3.46$ (s, 1H, SH), 8.23 (s, 1H, 5 '-H), 15.23 (s, 1H, OH); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (DMSO): $\delta 153.12$ (C-2'), 112.86 (C-5'), 144.37 (C-4'), 156.22 (C-2), 168.77 (C-4).

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{NO}_{3} \mathrm{~S}_{2}: \mathrm{C}, 51.97 ; \mathrm{H}, 2.54, \mathrm{~N}, 5.05$. Found: C, 51.55; H, 2.91; N, 5.28.

REFERENCES AND NOTES

[1] A. Hantzsch, Ann. Chem., 249, 1 (1888).
[2] R. H. Wiley, D. C. England and I. C. Behr, Org. React., 6, 367 (1951).
[3] P.G. Sammes, "Sulfonamides and Sulfones, Comprehensive Medicinal Chemistry", Vol. 2, Eds. Pergamon, Oxford 1990. pp 255-270.
[4] S. Rover, M. A. Cesura, P. Huguenin and A. Szente, J. Med. Chem. 40, 4378 (1997).
[5] L. W. Wattenberg, L. K. T. Low and A. V. Fladmoe, Cancer Res., 39, 1651 (1979); R. E. Willette and T. O. Soine. J. Pharm. Sci., 51, 149 (1961).
[6] F. M. Dean, "Naturally Occurring Oxygen Ring Compounds", Butterworth, London, 1963, pp 176-220.
[7] Chang-Yi Qian, Zhong-Tian Jin and Bing-Zhu Yin, J. Heterocyclic Chem., 26, 601 (1989).
[8] I. Iwataki, Bull. Chem. Soc. Japan, 45, 3218 (1972)
[9] T. Nozoe, "Non-benzenoid Aromatic Compounds", D.
Ginsburg, ed, Interscience Publishers, Inc., New York 1959, pp 339-463.
[10] H. J. M. Dou and G. Vernin and J. Metzger, J. Heterocyclic
Chem., 6, 575 (1969).
[11] M. Baule, R. Vivaldi, J. C. Poite, H. J. M. Dou, G. Vernin and J. Metzger, Bull. Soc. Chim. France, 2679 (1972).
[12] Z.-H. Li, Z.-T. Jin B.-Z. Yin and K. Imafuku, J. Hetericyclic Chem., 24, 779 (1971).
[13] K. Takase, K. Kasai, K. Shimizu and T. Nozoe, Bull. Chem. Soc. Japan, 44, 2466 (1971).
[14] V. Grakauskas, J. Org. Chem., 35, 723 (1970).
[15] V. Grakauskas, J. Org. Chem., 34, 3825 (1969).
[16] M. Fieser and L. F. Fieser, "Reagents of Organic Synthesis", Vol 4, 1974, p 386.
[17] G. Rosini and G. Baccolini, J. Org. Chem., 39, 826 (1974).
[18] M. Gaudry and A. Marquet, Org. Synth., 55, 24 (1976).
[19] S. Viswewariah, Synthesis, 309 (1982).
[20] S. Sukdolak, S Solujic, N. Manojlovic, M. Milosev, and Lj. Krstic, $3^{\text {rd }}$ Int. Conf. of the Chemical Societes of the South-Estern European Countries Vol. 2, PO 422 Bucharest 2002.

